Solved! What Is a Fuel Cell? (2024)

  • Green

These eco-friendly power sources can run everything from cars to hospitals to data centers.

By Tony Carrick | Published May 19, 2023 8:08 AM

We may earn revenue from the products available on this page and participate in affiliate programs.

  • Solved! What Is a Fuel Cell? (1)

Q: During a recent blackout, my neighbor and I kicked around the idea of alternative power sources. Besides solar and wind, he mentioned fuel cells, which I hadn’t heard much about. What is a fuel cell, how is it used, and how is it different from other energy sources?

A: A fuel cell creates electricity through a process that transforms energy created from a chemical reaction between a fuel (usually hydrogen) and an oxidizing agent (typically oxygen). Though fuel cells aren’t used as widely as more traditional power generation sources, such as fossil fuels or lithium-ion batteries, they have a broad range of applications. Although they do not need recharging like batteries, they do need a fuel supply to produce electricity.

In transportation, fuel cells power cars, trucks, trains, and even submarines. You’ll also find them serving as primary energy sources for residential and commercial buildings in rural areas that are off the grid. Hospitals, data centers, and even grocery stores use them as backup power generation solutions, ensuring the businesses have electricity in the event of a power failure.

RELATED: How to Recoup Your Energy Efficiency Home Improvements at Tax Time

What is a fuel cell?

Unlike a lithium-ion battery, which stores energy, a fuel cell creates chemical energy through an electrochemical reaction between fuel (usually hydrogen) and the oxygen in the surrounding air. When hydrogen and oxygen atoms combine, the reaction releases a massive amount of energy. In fact, the chemical reaction between the two elements is so powerful that it can send rockets into space.

When this energy is routed through a fuel cell (instead of being used to create an explosion), the reaction creates electricity and heat. When the chemical reaction is large enough, it can produce enough electricity to move a vehicle or provide power to a building.

How does a fuel cell work?

Fuel cells use four basic parts to create energy: the anode, cathode, electrolyte, and catalyst. In a hydrogen fuel cell, the most common type, hydrogen atoms enter the fuel cell at the anode. Once inside the anode, a catalyst, usually platinum, separates the hydrogen molecules into electrons and protons.

Photo: istockphoto.com

The electrons are then forced through a circuit, creating electricity that can power an electric car, hospital, or apartment building. After exiting the circuit, the electrons arrive at the cathode, where they reunite with the protons and combine with oxygen to create the reaction’s byproducts of water and heat.

What are the benefits of fuel cells?

Fuel cells have several eye-popping benefits. They burn no fossil fuels, produce no pollution, and get twice the mileage of battery-powered cars. (We should note that the process of creating the necessary hydrogen for fuel cells isn’t 100-percent clean but is comparable to lithium-ion battery emissions and far cleaner than burning fossil fuels). Whereas lithium-ion batteries take hours to recharge, you can refill a tank of hydrogen in 5 minutes or less, similar to the time needed to fill a gas tank with unleaded fuel.

Given these benefits, why are we seeing so many battery-powered Teslas on the road and very few hydrogen cars? Many states haven’t invested in hydrogen refueling stations because they’re so expensive to build. It costs nearly $2 million to build a hydrogen refueling station. As such, there are currently fewer than 70 hydrogen refueling stations in the country, nearly all of which are in California. In comparison, you can charge a car powered by a lithium-ion battery by plugging it into a standard power outlet at home.

Fuel cells see more widespread use as stationary power sources. They’re far more efficient than traditional power plants that burn fossil fuels. According to the U.S. Department of Energy, fuel cell systems can generate electricity with efficiencies of up to 60 percent, far greater than the 33 to 35 percent efficiency of a traditional power plant.

RELATED: Solved! How to Use Your Home’s Solar Panels to Charge Your Electric Car

Photo: istockphoto.com

7 Types of Fuel Cells to Know

While the polymer electrolyte membrane (PEM) may be the most common among the types of fuel cells, there are six other examples of fuel cells that have paved the way for today’s fuel cell technology, are currently in use, or are under development:

  • Polymer Electrolyte Membrane (PEM): The most common type of fuel cell is smaller and lighter than other fuel cells. PEM fuel cells, which run off of hydrogen, water, and oxygen, are lightweight compared to other fuel cells and operate at a relatively low maximum temperature of about 176 degrees Fahrenheit. With these characteristics, hydrogen fuel cells are the ideal choice for fuel cell electric vehicles.
  • Direct Methanol: Instead of using hydrogen as its fuel source, this type of fuel cell uses methanol mixed with water. Methanol has a higher energy density than hydrogen and is a liquid, which makes it easier to transport while giving the user more energy from a smaller amount of fuel. As such, direct methanol fuel cells are ideal for portable electronics, such as cell phones and laptop computers.
  • Alkaline (AFCs): one of the first fuel cell technologies, AFCs have been used to provide much of the power for the onboard systems on NASA spacecraft for more than half a century. However, since exposure to carbon dioxide can negatively impact the performance of an AFC, this type of fuel cell isn’t as widely used on planet Earth.
  • Solid Oxide: Solid oxide fuel cells use a ceramic compound to create electricity. While they’re 60 percent efficient at converting energy to electricity, which is comparatively higher than other fuel cell types, they operate at temperatures that can eclipse 1,800 degrees Fahrenheit. As such, they require significant heat shielding to protect the people and materials around them. While this makes solid oxide suitable as backup generators to data centers and other sensitive buildings, solid oxide is not an option for vehicles or smaller electronics.
  • Phosphoric Acid: This type of fuel cell uses phosphoric acid as its catalyst with carbon electrodes that contain a platinum catalyst. Phosphoric isn’t particularly efficient at creating electricity, with an efficiency rating of between 37 percent and 42 percent. As a result, makers of these phosphoric acid fuel cells compensate by building them larger than other fuel cell types. Their bulky size limits this type of fuel cell for use mainly as a stationary power source.
  • Molten Carbonate: This type of fuel cell uses an electrolyte that consists of a molten carbonate salt mixture with metal as a catalyst. They have a high 65 percent efficiency rating and don’t require a precious metal as a catalyst, and therefore are cost-effective fuel cells. With these characteristics, molten carbonate fuel cells are good choices for utilities. However, since they operate at high temperatures, their components degrade more quickly, giving them a shorter lifespan than other fuel cells.
  • Reversible: This type of fuel cell functions like a PEM fuel cell by converting the reaction between oxygen and hydrogen into energy. When combined with solar and wind power, reversible fuel cells can use the excess energy created on sunny or windy days to split water, the byproduct of a PEM fuel cell, into oxygen and hydrogen, hence creating its own fuel. While still in development, reversible fuel cells present a truly renewable energy resource.

Photo: istockphoto.com

TAGS:

GENERATORS

ENERGY

SUSTAINABILITY

Introduction

I am an expert and enthusiast assistant. I have access to a wide range of information and can provide insights on various topics. I can help answer your questions about fuel cells and other energy sources. Let's dive into the details!

Fuel Cells: An Overview

A fuel cell is an energy conversion device that generates electricity through a chemical reaction between a fuel and an oxidizing agent. The most common fuel used in fuel cells is hydrogen, and the oxidizing agent is typically oxygen from the surrounding air [[1]].

How Fuel Cells Work

Fuel cells consist of four basic components: the anode, cathode, electrolyte, and catalyst. In a hydrogen fuel cell, hydrogen atoms enter the fuel cell at the anode. Inside the anode, a catalyst, usually platinum, separates the hydrogen molecules into electrons and protons. The electrons are then forced through a circuit, creating electricity that can power various applications such as electric vehicles, hospitals, or buildings. After exiting the circuit, the electrons arrive at the cathode, where they combine with protons and oxygen to produce water and heat as byproducts [[1]].

Applications of Fuel Cells

Fuel cells have a broad range of applications. In transportation, fuel cells can power cars, trucks, trains, and even submarines. They are also used as primary energy sources for residential and commercial buildings in rural areas that are off the grid. Additionally, fuel cells serve as backup power generation solutions for hospitals, data centers, and grocery stores, ensuring uninterrupted electricity supply during power failures [[1]].

Benefits of Fuel Cells

Fuel cells offer several advantages over traditional power generation sources. Here are some key benefits:

  1. Environmental Friendliness: Fuel cells burn no fossil fuels and produce no pollution. They are considered a cleaner alternative to traditional power sources.
  2. Efficiency: Fuel cell systems can generate electricity with efficiencies of up to 60 percent, which is higher than the efficiency of traditional power plants that burn fossil fuels [[1]].
  3. Quick Refueling: Unlike lithium-ion batteries that require hours to recharge, fuel cells can be refueled with hydrogen in 5 minutes or less, similar to filling a gas tank with unleaded fuel [[1]].

Types of Fuel Cells

There are several types of fuel cells, each with its own characteristics and applications. Here are seven types of fuel cells:

  1. Polymer Electrolyte Membrane (PEM): This is the most common type of fuel cell. It is smaller, lighter, and operates at a relatively low maximum temperature. PEM fuel cells are commonly used in fuel cell electric vehicles [[1]].
  2. Direct Methanol: Instead of using hydrogen, this type of fuel cell uses methanol mixed with water. It is suitable for portable electronics like cell phones and laptops due to its higher energy density and ease of transport [[1]].
  3. Alkaline (AFCs): Alkaline fuel cells have been used in NASA spacecraft for onboard systems. However, they are less commonly used on Earth due to their sensitivity to carbon dioxide exposure [[1]].
  4. Solid Oxide: Solid oxide fuel cells use a ceramic compound and operate at high temperatures. They are more suitable as backup generators for data centers and other sensitive buildings rather than for vehicles or smaller electronics [[1]].
  5. Phosphoric Acid: This type of fuel cell uses phosphoric acid as its catalyst. It is less efficient in creating electricity but can be used as a stationary power source [[1]].
  6. Molten Carbonate: Molten carbonate fuel cells use a molten carbonate salt mixture as an electrolyte. They have a high efficiency rating and are cost-effective, making them suitable for utilities [[1]].
  7. Reversible: Reversible fuel cells can convert the reaction between oxygen and hydrogen into energy. They can use excess energy from renewable sources like solar and wind power to split water into oxygen and hydrogen, creating their own fuel [[1]].

While these are the main types of fuel cells, it's worth noting that fuel cell technology is continuously evolving, and there may be other variations or advancements in the future.

I hope this information helps you understand fuel cells and their applications. If you have any more questions, feel free to ask!

Solved! What Is a Fuel Cell? (2024)

FAQs

Solved! What Is a Fuel Cell? ›

A fuel cell is a device that generates electricity through an electrochemical reaction, not combustion. In a fuel cell, hydrogen and oxygen are combined to generate electricity, heat, and water.

What is a fuel cell in simple terms? ›

A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions.

What are fuel cells for dummies? ›

A fuel, such as hydrogen, is fed to the anode, and air is fed to the cathode. In a hydrogen fuel cell, a catalyst at the anode separates hydrogen molecules into protons and electrons, which take different paths to the cathode. The electrons go through an external circuit, creating a flow of electricity.

What are 3 things that could be used to fuel fuel cells? ›

Polymer electrolyte membrane fuel cells

PEM fuel cells use a solid polymer as an electrolyte and porous carbon electrodes containing a platinum or platinum alloy catalyst. They need only hydrogen, oxygen from the air, and water to operate.

What are fuel cells examples? ›

→ The common example of fuel cell is hydrogen-oxygen fuel cell. Fuel cells are different from ordinary galvanic cells.

What is the purpose of a fuel cell? ›

The purpose of a fuel cell is to produce an electrical current that can be directed outside the cell to do work, such as powering an electric motor or illuminating a light bulb or a city. Because of the way electricity behaves, this current returns to the fuel cell, completing an electrical circuit.

How does a fuel cell engine work? ›

Fuel cell cars are powered by compressed hydrogen gas that feeds into an onboard fuel cell stack that doesn't burn the gas, but instead transforms the fuel's chemical energy into electrical energy. This electricity then powers the car's electric motors.

What is the first problem with fuel cells? ›

Expensive to manufacture due the high cost of catalysts (platinum) Lack of infrastructure to support the distribution of hydrogen.

What is difference between fuel cell and battery? ›

The single most essential difference between fuel cells and batteries is simple: a battery stores energy which it then uses, whereas a fuel cell generates energy by converting available fuel. As long as you have access to the fuel, you have access to electricity – anytime, anywhere.

How to make fuel cell at home? ›

How to Build a Fuel Cell
  1. Step 1 – Determine how much power you need. ...
  2. Step 2 – The different parts of a Fuel Cell. ...
  3. Step 3 – What materials do I need? ...
  4. Step 4 – Consider the fuel cell operation. ...
  5. Step 5 – Prep the Polymer Electrolyte Membrane (PEM) ...
  6. Step 6 – Create the electrode layer. ...
  7. Step 7 – Assemble the Membrane Electrode.

What are disadvantages of fuel cells? ›

Cost of Raw Materials

Precious metals such as platinum and iridium are typically required as catalysts in fuel cells and some types of water electrolyser, which means that the initial cost of fuel cells (and electrolysers) can be high. This high cost has deterred some from investing in hydrogen fuel cell technology.

What is the most efficient fuel cell? ›

Alkaline Fuel Cells

Operating at 60-70ºC (140-158ºF), AFCs are among the most efficient type of fuel cells, reaching up to 60% efficiency and up to 87% combined heat and power.

What is the only waste product of a fuel cell? ›

Fuel cells directly convert the chemical energy in hydrogen to electricity, with pure water and potentially useful heat as the only byproducts.

What cars use fuel cell? ›

Current
ModelProductionComments
Toyota Mirai (JPD10) Toyota Mirai (JPD20)2015-2020 2020–presentMarketed mainly in Japan, California, and Europe. As of November 2021, global sales topped 17,600 units since inception.
Hyundai Nexo2018–presentMarketed in South Korea, California, and Europe.

What is the most common type of fuel cell? ›

The most common type of fuel cell for vehicle applications is the polymer electrolyte membrane (PEM) fuel cell. In a PEM fuel cell, an electrolyte membrane is sandwiched between a positive electrode (cathode) and a negative electrode (anode).

Which is better hydrogen or methanol fuel cell? ›

Methanol fuel cells have higher energy density compared to hydrogen fuel cells, which means more energy can be stored in a smaller space. Methanol fuel cells can be less expensive to build and maintain compared to hydrogen fuel cells. Methanol is a liquid at room temperature, which makes it easier to handle and store.

What is a hydrogen fuel cell in layman's terms? ›

Hydrogen fuel cells produce electricity

The hydrogen reacts with oxygen across an electrochemical cell— similar to a battery—to produce electricity, water, and small amounts of heat. Hydrogen fuel cells are currently used to power the electrical systems on spacecraft and to supply electricity on earth.

What is the difference between a battery and a fuel cell? ›

In simple terms, batteries produce electricity using stored energy while fuel cells generate power with hydrogen-rich fuel. Lithium-ion batteries contain anodes and cathodes and an electrolyte separator that fills the remaining spaces. Both anodes and cathodes can store lithium ions.

What is the fuel cell and what are its main advantages? ›

It is a device which directly converts solar energy into electrical energy e.g. H2−O2 fuel cell. Advantages of fuel cell : (i) It does not cause pollution. (ii) It has infinite life time. (iii) It has an efficiency of 60-70%.

Top Articles
Latest Posts
Article information

Author: Domingo Moore

Last Updated:

Views: 5676

Rating: 4.2 / 5 (73 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Domingo Moore

Birthday: 1997-05-20

Address: 6485 Kohler Route, Antonioton, VT 77375-0299

Phone: +3213869077934

Job: Sales Analyst

Hobby: Kayaking, Roller skating, Cabaret, Rugby, Homebrewing, Creative writing, amateur radio

Introduction: My name is Domingo Moore, I am a attractive, gorgeous, funny, jolly, spotless, nice, fantastic person who loves writing and wants to share my knowledge and understanding with you.